The spectral representation of two-point boundary-value problems for third-order linear evolution partial differential equations

نویسنده

  • B. Pelloni
چکیده

We use a spectral transform method to study general boundary-value problems for thirdorder, linear, evolution partial differential equations with constant coefficients, posed on a finite space domain. We show how this method yields a simple characterization of the discrete spectrum of the associated spatial differential operator, and discuss the obstructions that arise when trying to represent the solution of such a problem as a series of exponential functions. We first review the theory for second-order two-point boundary-value problems, and present an alternative way to derive the classical series representation, as well as an equivalent integral representation, which generally involves complex contours. We illustrate the advantages of the integral representation by studying in some detail the case where Robin-type boundary conditions are prescribed. We then consider the third-order case and show that the integral representation is in general not equivalent to a discrete series representation, justifying a posteriori the failure of some of the classical approaches. We illustrate the third-order case in detail, using the example of the equation qtCqxxxZ0 for various types of boundary conditions. In contrast with the secondorder case, the qualitative properties of the spectrum of the associated spatial differential operator depend in this case not only on the equation but also on the type of boundary conditions. In particular, the solution appears to admit a series representation only when the prescribed boundary conditions couple the two endpoints of the interval.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of positive solution to a class of boundary value problems of fractional differential equations

This paper is devoted to the study of establishing sufficient conditions for existence and uniqueness of positive solution to a class of non-linear problems of fractional differential equations. The boundary conditions involved Riemann-Liouville fractional order derivative and integral. Further, the non-linear function $f$ contain fractional order derivative which produce extra complexity. Than...

متن کامل

F-TRANSFORM FOR NUMERICAL SOLUTION OF TWO-POINT BOUNDARY VALUE PROBLEM

We propose a fuzzy-based approach aiming at finding numerical solutions to some classical problems. We use the technique of F-transform to solve a second-order ordinary differential equation with boundary conditions. We reduce the problem to a system of linear equations and make experiments that demonstrate applicability of the proposed method. We estimate the order of accuracy of the proposed ...

متن کامل

Dhage iteration method for PBVPs of nonlinear first order hybrid integro-differential equations

In this paper, author proves the algorithms for the existence as well as the approximation of solutions to a couple of periodic boundary value problems of nonlinear first order ordinary integro-differential equations using operator theoretic techniques in a partially ordered metric space. The main results rely on the Dhage iteration method embodied in the recent hybrid fixed point theorems of D...

متن کامل

The Study ‎of ‎S‎ome Boundary Value Problems Including Fractional ‎Partial ‎Differential‎ Equations with non-Local Boundary Conditions

In this paper, we consider some boundary value problems (BVP) for fractional order partial differential equations ‎(FPDE)‎ with non-local boundary conditions. The solutions of these problems are presented as series solutions analytically via modified Mittag-Leffler functions. These functions have been modified by authors such that their derivatives are invariant with respect to fractional deriv...

متن کامل

Rational Chebyshev Collocation approach in the solution of the axisymmetric stagnation flow on a circular cylinder

In this paper, a spectral collocation approach based on the rational Chebyshev functions for solving the axisymmetric stagnation point flow on an infinite stationary circular cylinder is suggested. The Navier-Stokes equations which govern the flow, are changed to a boundary value problem with a semi-infinite domain and a third-order nonlinear ordinary differential equation by applying proper si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008